出色的教学反思可以让老师今后再教学上吸取教训,更上一层楼,我们认真写一写教学反思,可以不断提升自己的教学成绩,美篇吧小编今天就为您带来了中位线的教学反思6篇,相信一定会对你有所帮助。
中位线的教学反思篇1
?中位数和众数》是一节概念课,也是一节体会统计思想的活动课。在思考这节课该教学什么时,我认识到如果只是把“教什么”定位于“会求中位数、众数”,那么只是关注技术层面的练习,这是很不够的,因此我认为在这节课中理解概念的本质含义更重要。于是这节课我在层层递进的过程中,逐步丰富和建构对中位数和众数本质含义的理解。
一、创设认识冲突,引出概念
首先出示两个超市员工的平均工资,由平均数来对两个超市工资进行对比分析,激发学生进一步认识平均数,初步感受到,平均数受其中每个数的影响。引导思维转入深层次思考。然后制造认知冲突,出示工资表,旺旺超市的平均工资虽然高,可是员工的具体工资却比苹果超市低。让学生感受到:受极端数据影响,平均数不能很好的反映整体状况和集中趋势。采用两个超市的对比,更加深刻的反映此时“平均数”不能很好的代表整体水平,由此激发寻找新的合适的量的必要性。
二、在对比中深化概念理解。
对比是理解概念的一种重要方式。
在创设主题情景时,对两个超市员工的平均工资的比较,创造认知冲突,“平均工资高的不一定员工工资就高”,从而比较深刻的感受“平均数骗了我们”,需要寻求新的量来表示。这样的设计与教材中呈现的情境相比,学生的认知冲突更为明显,产生寻找新量的“需求”更大,自然兴趣也更高。
在进一步明晰概念时,对两个超市的“平均数、中位数、众数”进行横向与纵向的对比,更能让学生体会概念的含义,以及概念间的区别与联系。
在深入理解概念的过程中,创设了动态的对比,将“19,20,21,21,24”中的“24”换成“49”,三个统计量(平均数、中位数和众数)会发生什么变化。这种在变化中的对比,促使学生能更深刻的体会三量自身的含义及相关联系与区别。
三、深入挖掘数学本质。
在学生体会了中位数、众数的概念含义,以及概念间的区别和联系后,我提出了既然平均数2500元不能很好表示旺旺超市的工资水平,可是旺旺超市的老板为何要这样写呢?学生说出这是老板的一种策略,我从而提出:“是啊,平均数2500元没错,但它会让求职者产生误会,以为员工工资都高,如果让你来重新写一份比较合理的招聘广告,你会写吗?”此时,学生都能结合中位数和众数来写广告,我又及时提出中位数众数我们都认识,可是一些阿姨年纪大,不认识这两个概念怎么办?这是学生又提出了中等工资水平,多数工资水平。可见在实际应用中,学生已经更深入地理解了这两个概念的本质意义。
中位线的教学反思篇2
本节课是北师大版五年级数学下册的内容。主要是让学生在实际情境中认识并会求一组数据的中位数和众数,并解释其实际意义。这是一堂概念课,也是学生学会分析数据,作出决策的基础课。
一、创设问题情境,引发认知冲突。
在使用教材时,我对教材使用了如下处理:创设了一个用平均年龄来反映一群人的年龄水平的生活情境,让学生在现实情境中发现单靠“平均数”来描述数据特征有时是不合适的,从而理解中位数和众数产生的必要性,让知识的产生联系生活实际的.需要。
二、引导分析讨论,加深概念理解。
接着提供了某人去找工作,招聘广告承诺月平均工资1000元,觉得条件不错,可当他看到该超市月工资表时,却有疑问了。就势向学生提出“用平均数1000元来描述该超市工作人员的月工资水平合适吗?那么,你觉得用哪个数来描述比较合适?”这是一个生活中的真实问题,通过学生的思考、讨论,在此基础上理解众数、中位数的意义,怎么求中位数和众数,紧接着通过四组练习题,让学生了解到特殊情况下中位数和众数的求法。
三、在运用中完善知识结构。
从发展学生认识问题、探索问题、研究问题的能力角度考虑,我设计了大量的与学生生活实际密切相关的思考题,几乎所有的问题都在学生身边,使学生得以联系实际,设身处地的去考虑问题,在问题解决的过程中加深对概念的进一步理解,体会到平均数、中位数和众数三者既各有所长,也都有不足,一定要根据需要灵活选择。从而使学生领会到在实际生活中一定要多角度全面的考虑问题,分析问题。
上完此节课后,我觉得在三种统计量的应用方面还有所欠缺,如果课前能让学生自己去搜集一些生活中的数据,在课堂上提出来自己觉得哪种统计量更适合自己搜集到的数据,为什么?让其他同学来评评他的看法,这样能使课堂气氛更加活跃起来,增加师生以及生生之间的互动性。
中位线的教学反思篇3
今天用多媒体上了《中位数和众数》,虽然没有什么大问题和疑问,但还是有一些知识需要整理和补充。以下是我在教学过后从网络上学习的内容,虽不是我所写,但是却是我所想。中位数和众数是根据《数学课标》的要求新增加的教学内容。在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。
平均数、中位数、众数这三个统计量虽然都代表一组数据典型水平或集中趋势的量,但是它们反映数据的特征有所不同。
下面谈谈这三种统计量之间的异同点:
一、平均数、中位数、众数的相同点.
平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。平均数、中位数、众数都是描述数据的集中趋势的“特征数”,平均数、中位数和众数从不同侧面给我们提供了同一组数据的面貌,平均数和中位数都有单位(众数如果表示的是数时,也有单位);它们的单位和本组数据的单位相同。三者都可以作为一组数据的代表。
二、平均数、中位数、众数的不同点
(一)三者的定义及优缺点不同。
1.平均数。
①平均数的定义及特点。
小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。
在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。既可以用它来反映一组数据的一般情况(用平均数表示一组数据的情况,有直观、简明的特点),也可以用它进行不同组数据的比较,可以看出组与组之间的差别。平均数反映一组数据的平均水平,与这组数据中的每个数都有关系;用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,所有的数据都参加运算,对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。在平均数中有一种去尾平均数,它是将一组数据的其中一个最大值和一个最小值去掉后其余数值的平均数.它保留了平均数的集中趋势代表性强的优点,又具有中位数的'可排除个别数据变动较大所带来的影响的特点,因而当一组数据的个数较少、且可能个别数据变动较大时,常用去尾平均数去描述一组数据的集中趋势.例如,体操比赛时给每个运动员评分,实际上用的就是去尾平均数:若干个裁判员同时给一个运动员完成的动作评分;然后在去掉其中一个最高分和一个最低分后,将其余分数的平均数作为该运动员的得分。
②平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定,它也是学生今后学习计算离差、相关和统计推断的基础。
③平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算。一组数据的每一个数据都要参加计算才能求出,特别是当一组数量较大的数据,其计算的工作量也较大。平均数易受极端数据的影响,从而使人对平均数产生怀疑。这也就是为什么在许多竞赛场合下对评委亮分后的成绩分数,要去掉一个最高分和一个最低分,尔后再计算平均数的一种考虑。
2.中位数。
①中位数的定义及特点:一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。用中位数作为一组数据的代表,可靠性不高,但受极端数据影响的可能性小一些,有利于表达这组数据的“集中趋势”。
②中位数的优点。
简单明了,很少受一组数据的极端值的影响。
③中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
3.众数。
①众数的定义及特点。
几组数据中出现次数最多的那个数据,叫做这批数据的众数。用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。如果一组数据中出现频数(一组数据中每个数据出现的次数成为频数)最多的是并列的两个数,不是用这两个数的平均数做它们的众数,而是说这两个值都是它们的众数。如果一组数据中没有哪一个数值出现的次数比别的多,我们就说它们没有众数。没有众数,不能说众数为o。众数也可能不是数。
例如:20xx年8月,某书店各类图书销售情况如下图:8月份书店售出各类图书的众数是——。
回答应该是:8月份书店售出各类图书众数是文化艺术类。
②众数的优点。
比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。
③众数的缺点。
当一组数据变化很大时,它只能用来大略地估计一组数据的集中趋势。
(二)三者的计算方法不同。
1.求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
2.求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
3.众数由所给数据可直接求出,出现次数最多的数据就是众数。
(三)三者的适用范围不同。
1.平均数的计算中要用到每一个数据,因而它反映的是一组数据的总体水平,选择特征数表示一组数据的集中趋势时,我们用得最多的是平均数,用它作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数据都有关系,能够最为充分地反映这组数据所包含的信息,在进行统计推断时有重要的作用,但容易受到极端数据的影响。在大多数情况下人们喜欢使用平均数这一指标来代表一批数据或用它来反映大量事物的整体水平。
例如:用平均分反映一个班级学生的某项能力测验结果;用平均分来集中概括一些竞赛场合下各位评委对参赛选手进行评分的总结果等等。
2.中位数是一组数据的中间量,代表了中等水平。中位数在一组数据的数值排序中处于中间位置,在统计学分析中扮演着“分水岭”的角色,由中位数可以对事物的大体趋势进行判断和掌控。在个别的数据过大或过小的情况下,“平均数”代表数据整体水平是有局限性的,也就是说个别极端数据是会对平均数产生较大的影响的,而对中位数的影响则不那么明显。
所以,这时用中位数来代表整体数据更合适。即:如果在一组相差较大的数据中,用中位数作为表示这组数据特征的统计量往往更有意义。
例如:甲乙两学生射击的环数如下:甲:10环、10环、9环、3环。乙:9环、5环、3环、2环。请你试一试如何评价他们的射击成绩。这里甲有2个10环,1个9环,一个意外的3环,对于这个3环,可以看作是一个奇异值或极端数据,如用平均数来评价甲的总成绩就不能客观反映甲的射击环数主要是9环与10环的事实。由于数据中有一个极低数值出现,故计算平均数时就一下子把分数降下来了。采用中位数9.5环较合适。乙的射击成绩中5环以下有3次,还有一次是意外的9环,对这组数据,如计算平均数后是5环,但用5环来代表乙的成绩在一定程度上偏高估计了乙的总体成绩,所以采用中位数4环比较合宜。
3.众数代表的是一组数据的多数水平,若一组数据中众数的频数比较大,并且与其他数据的频数相差较大时,我们一般选用众数。众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
例如:,某班42名同学,年龄11岁的有24个人,年龄10岁的有8个人,年龄12岁的有6个人,年龄超过12岁的有4个人。则该班同学年龄分布的众数为11岁,它表明该班年龄为11岁的同学最多。(注意众数不是24人)
总之,平均数、中位数和众数从不同的侧面向我们提供了一组数据的面貌,我们可以把这三种特征数作为一组数据的代表,但它们所表示的意义是不同的。
选用它们表示一组数据的集中趋势时,一般是遵循“多数原则”,即哪种特征数能代表这组数据的绝大多数,正确选用合适的特征数来说明、评价、分析实际问题,避免误用和滥用。关于平均数、中位数、众数的知识我们可以总结为:
分析数据平中众,比较接近选平均,相差较大看中位,频数较大用众数;所有数据定平均,个数去除数据和,即可得到平均数;大小排列知中位;整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是众数。
中位线的教学反思篇4
本次公开课我讲了五年级中的《中位数和众数》一课,在讲完课以后学校领导以及老师们给我提出了宝贵而又中肯的建议,使我收获甚多,之后我进行了细致的研究与分析,并总结出了以下需要提高和改善的地方:
一、细致研究与分析教参
王校在我讲完公开课之后,她细读了教参,并且提出了教参中需要比较出平均数、众数、中位数这三者的异同,而我的教案中缺少了比较的方面,她告诉我一定要深刻细致的研究教参,这样才可以精心上好每一节课。我回去重新研究了这节课,确实是我忽略了这一点,现在想想也许就是这一点可能会误导好多学生。造成的后果该多严重呀!
二、导入
在这节课中,我是以踢毽的两组数据导入的,之后让学生找平均数、众数、中位数这三种统计量,以这样的方式导入无法区分这三者的异同,孩子们或者会想为什么要用到中位数和众数呀,用平均数不就已经可以反映出两组学生踢毽的水平了吗?王校给我提出了最朴实的建议:可以以教材中的例子入手,刚开始有两组数据,算出的平均数都是5,因此无法比较两组到底谁植的好,因此引出中位数和众数的概念,可能孩子更容易理解其用意。本节课我导入的时间过于长了,在“十项技能大赛”直接就应该说出来,不应该在此处浪费过多的时间和精力。
三、中位数、众数、平均数的区别
王校提出应该让学生明白在什么情况下去用这三种统计量,比如:①在这组数据模糊不清的时候,此时无法用平均数去比较,则这时用中位数比较能反映两组数据的异同。其次应该让学生明确中位数、众数、平均数的优势、劣势是什么,中位数的优势是只和中间位置的数据有关,极端值不影响中位数。中位数的劣势是:只能反映中间数的特点,反映数据的局部性。众数的优势是:明显趋势。
平均数的优势能反映出整体的趋势,但如果数据不清楚时则无法求出。还有在引出中位数的时候,王校建议我可以直观的借助孩子的资源,让一列学生站起来,直接让孩子去找中位数,那样不更直观和清晰吗?还有在讲众数的时候,如果这组数据是这样的:12、3、4、5、6、87可以明显的看出这组数没有众数,在本节课中我没有涉及到,所以在有些情况是没有众数的。还应该着重强调中位数、平均数只能有一个,而众数可能有一个或者多个,也可能一个也没有。
四、细节注意
1、上课时我的头发由于过长所以对教学有严重的影响,我一定会注意,并及时改正。
2、讲到中位数这个难点的时候我给学生的空间太小了,应该花费更多的时间去处理这块知识点,应该把学生的排列结果在投影中展示出来,这样才能给学生加深记忆并强调做题方法。
3、到生活中“均码”的概念时,应该先让学生自己说说,然后再给出相关概念的陈述。
4、书:主要呈现中位数的两种特殊情况就可以了,多余的东西就删掉了。
5、语速:新教师都会说话比较快,我一定要克服这个致命的缺点把重难点突出来。
这次公开课并没有因此而结束,听了王校长和老师们的建议真的让我收获好多,并且更加懂得了,要想上一节好课需要下多么大的功夫。我想我会以此为契机,在今后的教学中更加严格要求自己,认真备好每一节课,使之行之有效的上好每一节课,成为学生爱戴的好老师。
中位线的教学反思篇5
一、分析教材:
平均数、中位数和众数是三种反映一组数据集中趋势的统计量。当一组数据中出现一些极端数据时(个别数据偏大或偏小),平均数会受其影响,不能很好地代表这组数据的集中趋势。中位数或众数虽然不受极端数据的影响,但它们不能利用所有的数据信息,有时也不能完全反映出一组数据的集中趋势。
二、教学目标:
让学生通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。让学生感受统计在生活中的应用,增强统计意识,培养统计能力。
三、教学重难点:
让学生会求中位数和众数,能结合情景理解其实际意义。教学难点是能根据具体问题情境选择适当的统计量表示数据的不同特征。
四、教学步骤:
上课前,我先让同学们玩“猜年龄”的游戏,让学生们初步感知平均数受到极端数据的影响,而不能反映出数据的一般水平。接着呈现一个超市工作人员工资的表格,引导学生讨论“怎样表示这个超市工作人员的月工资水平”在讨论中学生体会到平均数受极端数据的影响,不能很好地代表这组数据,需要新的统计量。从而引入新的统计量——中位数和众数。最后继续创设情景,让学生明白当数据个数奇、偶不同时,求中位数的方法也不同。
反思
1、数学活动的主人是学生,教师是组织者、合作者、指导者,在教学本课时,我以“小陶找工作”这一线索,组织学生思考、讨论“用月平均工资1000元来描述员工的月工资水平合适吗”,让学生自我探索,解决问题。
2、数学学习要联系学生已有的生活经验,让学生感受到数学源于生活,并且通过学习,可以把数学知识运用到生活中去,解决生活中的问题,让学生体会到数学的价值,提高学习数学的兴趣。
3、当学生的回答偏离正题时,教师要及时地引导,帮助其认识问题的本质是什么,充分教师引导。
中位线的教学反思篇6
我从学生已有的知识和经验出发,设计认知冲突。“为什么老师跳得比平均数小,却还能排在第二呢?”让学生通过观察,并通过老师设计的条形统计图,形象地发现极端数据与其他数据之间的差距,强烈感受到:在这组数据中,如果出现了极端数据,这时用平均数作为这组数据的代表已经不太合适,需要选用新的数据作为代表,从而激发学生寻找新的数据代表的心理需求。
在第二个环节中,我让学生寻找新的数据代表,我让学生独立思考,自主探索,合作交流,充分经历寻找新的数据代表的过程,从中感悟中位数的意义。而且将中位数102与老师跳的107做比较,使学生初步领悟到中位数的作用,获得认知平衡。
本课的练习设计,我分别设计了这样几道题。一平均数与中位数比较的练习,让学生进一步感知什么时候用中位数代表一组数据的`水平比较合适。二平均数与中位数比较,让学生体会中位数与平均数相差不大的情况,如何选择数据代表。三实际生活中选合适的统计量的练习,进一步明确各个统计量的意义和作用,感悟到它们之间的联系与区别,逐步体会到要根据数据的特点,具体地分析数据,灵活选择数据代表;要根据不同的需要,选择合适的数据代表,做到具体数据具体分析,具体问题具体对待,不形成思维定势。
会计实习心得体会最新模板相关文章: